If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a=40/1.46^2
We move all terms to the left:
a-(40/1.46^2)=0
We get rid of parentheses
a-40/1.46^2=0
We multiply all the terms by the denominator
a*1.46^2-40=0
Wy multiply elements
a^2-40=0
a = 1; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·1·(-40)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*1}=\frac{0-4\sqrt{10}}{2} =-\frac{4\sqrt{10}}{2} =-2\sqrt{10} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*1}=\frac{0+4\sqrt{10}}{2} =\frac{4\sqrt{10}}{2} =2\sqrt{10} $
| 7x+16=-33 | | 24=g/19 | | 33+5a+6a=0 | | 26=y/24 | | 4u-24=-7(u+5) | | b-186=10 | | c+490=527 | | 3x+3=1/2(2x+6) | | n+156=662 | | 5x+(-55)=29 | | a=20/2.11^2 | | .7=-3c-2 | | g/19=19 | | 4(v+5)-7v=35 | | 8x+25=-65 | | u+2=98 | | x³+9x²-x-9=0 | | 5a+9=49+15 | | p-17=5 | | 0.80x=12 | | 17x+9=17x+12 | | 4y+20+2y+10=90 | | -3.4y=4+5y-72 | | 3x2+2=62 | | 12(0.80)=x | | 42=z+23 | | 0.5·x=7.2 | | (x+10)+(x+5)+(3x-35)=180 | | 2y+10=4y+20 | | k+69=90 | | 68+128x=x | | l=21/2+32/5 |